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Abstract: We consider a general problem of the confidence interval for a cross-product ratio

_ p(l-p,)
Y2 (l _p1)

according to data from two independent samples. Each sample may be obtained in the

framework of direct Binomial sampling scheme. Asymptotic confidence intervals are constructed in
accordance with direct Binomial sampling scheme, with parameter estimators demonstrating
exponentially decreasing bias. Our goal is to investigate the cases when the normal approximations
(which are relatively simple) for estimators of the cross-product ratio are reliable for the construction
of confidence intervals. We use the closeness of the confidence coefficient to the nominal confidence
level as our main evaluation criterion, and use the Monte-Carlo method to investigate the key
probability characteristics of intervals corresponding to direct Binomial sampling schemes. We present
estimations of the coverage probability, expectation and standard deviation of interval widths in tables
and provide some recommendations for applying each obtained interval.
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1. Introduction

The problem of comparing the success probabilities of
Bernoulli trials arises in biological and medical investigations.

In this article, we investigate the accuracy properties for
linear and logarithmic asymptotic confidence intervals of
the cross-product ratio of Binomial proportions under direct-
direct Binomial sample schemes.

In article Ngamkham and Volodins (2016) (11 and PhD
thesis Ngamkham 2018) (2], the problem of confidence

estimation for the ratio of Binomial proportions was
considered. The cross-product ratio statistic is more frequently

applied to real data, especially in medical and biological
research for analyzing2x2 contingency tables. This can be

explained by its importance for analyzing 2x2 contingency
tables; see Lehmann (1959) (31, Section 4.6 on page 143.

Because of that, it is very interesting to investigate
statistical inference for the cross-product ratio. There are many

authors studied about the cross-product ratio under direct-
direct sampling scheme.
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Goodman (1964) 41 developed the simple methods of
obtaining confidence limits for the cross-product ratio in a

2x2  table, these methods
simultaneous intervals

to obtain
for the

r(r—1)c(c—1)/ 4 cross-product ratios in an rxc table and,

likewise, for the relative differences between the
corresponding cross-product ratios in K different r xc tables.

and extended
confidence

Goodman’s research indicates an improvement of
a method for 2x2 table introduced by Gart (1962) (5], and
extends the improved method the 7 xc tables. These methods
are easier to apply than those given by Cornfield (1956)(61.
Andél (1973) (71 suggests a method based on logarithmic
interactions for comparing the association in k fourfold tables
(k independent samples).
Lee (1981) (8] presented the empirical Bayes modification
of the cross-product ratio for studying the trend and degree of
relationship between two cross-classified factors in a 2x2

contingency table. The Independent Poisson, Product

Multinomial, and Multinomial are the three sampling schemes
used for determining the cell frequencies in contingency
tables. These procedures were studied and compared with the

classical procedures, the results indicated that the empirical
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Bayes estimation procedures had a lower average squared
error than the classical procedures.

Albert and Gupta (1983) (91 investigated the Bayesian
approach to the estimation of the cell probabilities for 2x2
and [x2 tables. In the 2x2 table in which the prior
information was declared in terms of the cross-product ratio
coefficient. For the I x2 table they used estimators based on a
two-stage prior for the / binomial probabilities, where the first
stage was the conjugate beta distribution and the second stage
was discrete uniform.

Holland and Wang (1987) (107 used the local dependence
function that measures the margin-free dependence to order
bivariate distributions.

Wang (1987) (111 applied the characterization of a bivariate
normal distribution to generate a table of probability integrals
via the iterative proportional fitting algorithm.

McCann and Tebbs (2009) (127 constructed the
simultaneous logit-based confidence intervals for odds ratios
in the analysis of classification tables with a fixed reference
level. They examined six procedures to control the familywise
error rate and consider the simultaneous coverage probability
and mean interval width, which can be used to construct
simultaneous confidence intervals.

Baxter and Marchant (2010) [13) described that the non-
randomized trials can provide bias in the effectiveness of any
intrusion. This study showed a process to estimate the bias in
such trials under the bivariate log-normal and gamma
distributions, and the size of the bias under two different
bivariate models.

Xu (2012) 141 demonstrated the odds ratio or the cross-

product ratio is greater than or equal to one under the
generalized proportional hazards model. The author used this

property to improve a process of testing when the generalized
proportional hazards model is not ideal to use for a data set.

Schaarschmidt et al. 2017) [15] proposed an asymptotic
method for computation of simultaneous confidence intervals
for user-defined sets of pairwise, between-treatment
comparisons and user-defined sets of odds ratios based on the
assumption of several independent multinomial samples. An
improvement of this method by taking the correlation into
account and application of Dirichlet posteriors with vague
Dirichlet prior is also considered.

Niebuhr and Trabs (2019) [16] examined the impact of

weighted data for the estimation of a discrete probability
distribution for one-dimensional distributions. The weighting

of observations usually increase estimation variances. In the
two-dimensional discrete distribution, this research assumes
that one marginal distribution is known. This additional

information in one category of a contingency table allows for
adjusting the estimation of another marginal if there is some
degree of association between the two categories. For the

marginals can not be assume that the marginals are
independent, the authors presented to use the adjusted
estimators in applications.

Martin Andrés et al. 2020) (17] considered the two-tailed
asymptotic inferences about the odds ratio in cross-sectional
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studies (under the multinomial sampling). The research
investigated 15 different methods, 5 of which were new and 10
were classic. They proposed new methods and compared them
with other procedures.

A common practice in statistics is to take the log
transformation of highly skewed data and construct confidence
intervals for the population average on the basis of
transformed data. To support our theoretical findings, we apply
the Monte-Carlo method to investigate the key probability
characteristics of the linear and logarithmic confidence
intervals. We use N =10° for the number of replications in our
Monte-Carlo simulations.

A mathematical statement of the problem is as follows. Let
X =(X,,.. X, ) and X" =(X,,..X,, ) be two
independent sequences of Bernoulli random variables with
success probabilities p, and p,, respectively. The observations
are done according to the sequential sampling schemes with
Markov stopping times Vv andv,.From the results of
observations X =(X,...,X,) and X =(X,,., X)), it
is necessary to identify the most accurate method of estimating
the cross-product ratio.

Each sample may be obtained in the framework of direct
binomial sampling scheme.

Direct binomial sampling. In this scheme, a random vector

X" =(X,,..,X,) with Bernoulli components and a fixed

number of observations is observed. Note that

T= Z; X, has the Binomial distribution B(n, p), which has

n

two parameters n and p, where nis a natural number and
0< p<1. If a random variable 7 has Binomial distribution,

then its probability mass function is

P{T =t} = [’Z)p'(l—p)"", t=0,1,..,n

. - T. . .
The random variable X, = — is asymptotically normal with a
n

. 1-
mean [, = p and variance o} = rd=p)
n

In the following, we will keep the notation X, X,,... for a

Bernoulli sequence obtained by the direct sampling scheme.

2. Estimation of Proportion p
and Its Reciprocal p*

First, we consider the problem of estimating parameter

.. . . 1
p (success probability) and parametric function — for the
p

1
—, where
q

so we avoid this expression in our further

Bernoulli trials. It seems difficult to estimate

g=1-p,
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o L 1
derivations by expressing it in terms of P and —; see
q p

Section III. In this section we discuss how to estimate p and

1
—. The following formulae is derived in Ngamkham (2018) (2
p

and Ngamkham and Volodins 2016)[17;
we present them in Table L

Table 1. Estimators for the proportion p and the reciprocal p™

for direct-direct sampling scheme

Proportion p Reciprocal p™

Direct Sampling Scheme

p,=X, | i __nl
"onXa+1

5 1
zp 11:_

n

In the case of direct-direct sampling scheme, the estimate
p~' is biased. Ngamkham (2018) (2] and Ngamkham and
Volodins 2016) (1] proved that

. - 1 . . .
Blas(p ' ) =—- E( ) =—(1—-p)"" is decreasing with an
p

exponential rate as n — oo. The estimate p, is unbiased

estimator.

p
3. Estimating the Parametric Functions

and 4
V4

To solve the problems stated in the Introduction, it is
necessary to construct estimates, preferably with exponentially

decreasing bias, for the parametric functions P and i,where
q p

g=1—p for direct-direct Binomial sampling scheme of
Bernoulli trials.
From the point of view of estimation, the simplest case is an

estimation of the parametric function 1 Really,
p
q_l-p_1_,
p p P

. 1 . . .
and we already know how to estimate — for direct Binomial
p

sampling scheme of Bernoulli trials from section IL

In the case of direct binomial sampling, we use statistics

o n+l1 . .
=— as an estimator of p
nXn+

with an exponentially

n
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decreasing bias.

We proceed with estimation of the parametric function L
q

Proposition I In the case of direct binomial sampling the
statistics

p / g = n}n
" n+l-nX,

Estimate the parametric functions P with an exponentially

q

decreasing bias.

Proof: As we know, the statistic 7 = nX, has the Binomial

distribution B(n, p). Therefore

_i k n!
in+l—k kl(n—k)!

pkq"’k for k =0 we have zero term

f=
— C n' k _n—k
kz(k DMn+ri—in? 4

n! i+l n—j-1
=2 ————p"q"
= Jjin= !

:£ j n—j _ n' n_0
q{,omn T TR }
3[

(p+q)-p"]= £(1 P

make a substitution j =k —1

n+l

P s decreasing

Therefore, Bias(p/q,) = P_ Epl/q,=
q
with an exponential rate as 7 —> oo.

To summarize, we present Table II. for the estimation of b
q

X,,...} is

sequences of independent Bernoulli random variables with the

and its reciprocal. In Table II, # is fixed numbers, {

n ~r T
parameter p,T =" X, X,=—.
- n

Table II. Estimators for the parametric functions P and 4
q p

for direct sampling scheme
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Parametric function £ Parametric function <
Direct Sampling Scheme — X n — n+l
rlg,=———= q/p,=—=—"1
n+l-nX, nXn.+1
_ o )
X xq/p, ==-1
e, = L X
" n+l
o el — g q
; PP Eqlp, =+-21—
Eplg, ==~ V=
q q

4. Point Estimator for the
Cross-product Ratio

In Table III, we present estimator of the cross-product ratio
pd-p) _p 4

p,(=-p) 4 p,
for direct-direct binomial sampling scheme. We compute the

of two proportions p = =plq,*xq/p,

estimator of the cross-product ratio from two independent
samples from direct-direct sampling scheme; from Table II. we

used the parametric functions Pand € substituted by
q p

a =p/q, and % _ q/ p, ,respectively.

q P, i

Table III. Estimator of the cross-product ratio of two

1—
proportions p = pd=p)

and its approximation for direct-
P (1 - D )

direct sampling scheme.

Sampling Scheme Second Sample Direct

nlfnl n, +1 3
n1+lfnlfnl nzfn:Jrl

- Xo (1 .
7y .y 1 B f”l f”:

First Sample Direct

pnl,n: -

Estimate of the cross-product ratio p is continuous

functions of statistics )_(n1 and )_(nz with finite second
moments; therefore the estimate is asymptotically normal. )_(n,

and )_(nz are independent. Now we find the asymptotic of the

mean and variance of this estimate using the standard Delta

method.

5. Delta-Method

Delta method can be explained briefly in the following way;
for details we refer interested reader; see Lehmann (2004) (18,

Section 2.5 on page 85.
Let g(v,,v,) be a differentiable scalar function of two

E-ISSN: 2224-2880

Chanakan Sungboonchoo,
Wararit Panichkitkosolkul, Andrei Volodin

variables. Consider an estimator 7 =g(V;,V,), which is a
function of two other basic statistics ¥, and 7,. Usually

statistics ¥, and ¥V, have a simple form and are jointly

1
asymptotically normal. The asymptotic distribution of an
estimator 7 is found with the help of delta-method, which is a
procedure of stochastic representation of 7 with the accuracy
Op (\iﬁ) where # is the sample size.

By the Delta-method, we expand function g into a Taylor
series at the point 4 = EV, and g, = EV,:

2
8 2
g(Vl’VZ) =g(ﬂ19ﬂ2)+2%

i=1 i

(¥, = i) + Remainder.

It is possible to prove that the remainder term of the
expansion converges in probability to zero with the rate

OP(I/Jmin {nl,nz}) as sample sizes n, and »n, tends to
infinity. We have that g(V,,V,)—g(u, ) is asymptotically
normal with a mean of zero and variance

2
2.0
E{Zf”(g‘—l_“”cn—m .

Therefore, the test statistics 7 is asymptotically normal

with mean g(g,,s,) and the variance of the form that is
expressed through the elements of the covariance matrix of

. - . og(uy,
basic statistics ¥;,¥, and the coefficients g(ﬂ—l’uz)

i

For large values of n and n,,the estimator of the cross-

product ratio p is functions of statistics }n, and }nz with

finite second moments; therefore, the estimate is

asymptotically normal. Our immediate task is to find the

asymptotic of the mean and variance of this estimator, for

which we explore the standard Delta method describe above.
In our case, the method is based on a Taylor series expansion
in the neighborhoods of the mean value of the statistic X,

and }nz. It is possible to calculate variance because statistics

)_(n, and }nz are independent.
We consider direct-direct sampling scheme:

Direct-direct: Fix two natural numbers », and n,. Let

X =(X,,.... X,, ) and X" =(X,,.., X, ) be two
independent sequences of Bernoulli random variables. We
know that the sample means for both samples V| = )_(n1 and

V,= )_(,,2 are asymptotically normal and jointly approximately
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normal, because the samples are independent. The form of the
function g(¥;,V,) will be presented in section VI. The

accuracy is Op (1/, /min {n,, nz}].

6. Asymptotic Distribution of Estimators
for the Cross-product Ratio

For large values of n and n,,the estimator of the cross-

product ratio p is functions of statistics )_(n1 and }nz with

finite second moments; therefore, the estimate is
asymptotically normal. Our immediate task is to find the

asymptotic of the mean and variance of this estimator, for
which we explore the standard Delta method describe in
Section V.

Remember that (see, for example Proposition 3 and 4,

Ngamkham (2018) [2)): statistic X, has a mean p and variance

ﬂ, and is asymptotically normal with these parameters.
n

If we use formulae for p, then our expressions for
asymptotic variance are quite cumbersome. Hence we use the
approximate estimators o in Delta method derivations.

In the following we will see that the normal approximation
for estimator p for direct-direct sampling scheme has the
structure of mean and variance:

Asymptotic Mean = p and
Asymptotic Variance = p’s’(p,, p,).

In the following, we will call s*(p,p,) a variance

Chanakan Sungboonchoo,
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Partial derivatives are:

agdd(vlavz) — 1 - i—l and agdd(vpvz) — v] =,
ov, I-v)" v, ov, (I=v)v;
and hence
5gd,1(171:1?2) _ q and agdd(pppz) _ )2
o, @\ P, ov, a,p;

A linear term Taylor expansion in the neighborhoods of the

mean values of the statistics takes the form

49

2
1

\ (X;nl _P1>_ qpl _

1p2

P = VisVa) = p+ (X - p,)-

From this, the estimator p, , is approximately normal with

Mean=p and (remembering that )_(n, and }nz are independent)

4 P4 P P
4 2 t—=0
p, n 9P

9,
d J(pll)2 /n, +[%J(pzl)2 /nz}

-2

In this case, the variance component

Variance=

V4 - p -
Sz(plapz) = (_lj(lﬁ 1)2 /'n, +[_2J(p21)2 / ny.
From Table III, we estimate p as

)

To obtain the plug-in estimator of the variance component, we

_ I’lanl
n+l-nX,

n, +1
nz)_(n2 +1

substitute estimations for £ and p~' (see Tables I and 1D,
component.
Direct-direct Sampling Scheme: X X, : 1
namely p, /¢, =——=.,p,/q, =—, p, ==—,and
From Table III, in this case the statistic of interest is —An 1-X, m
— ] ) ’
Pouon = Xi _L—l :gdd(I/l’I/Z):L L_l s where p21=_— and obtain
Y= X, (X, 1-v,\ v, "
J— J— — 2 — 2
V, =X, and V, = X,,. In this particular case the function ~2 Xy 1 X, 1
s = — _ /I’ll + — _ /}’12
1-X, \ Xy 1-X., \ X0,
gdy,(vl,vz):lv1 {i—lj.Note that 1 N 1
-y \v = — e
e m(=X.)Xn  n(1-X.)X,,
EV. =pVarV, =29 =12 and
p 1
8au(P1sPy) = —1[——1] =p.
1-p \ p,
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Asymptotic distribution of logarithm of estimate for the cross-
product ratio:

In the following we will see that the normal approximation
for estimator log p for direct-direct sampling scheme has the

structure of mean and variance:
Asymptotic Mean of log p =log p and
Asymptotic Variance of log p =5"(p,, p,)-

If we use formulae for p, then our expressions for

asymptotic variance are quite cumbersome. Hence we use the
approximate estimators o in Delta method derivations.

Direct.direct Sampling Scheme:

From Table 111, in this case the statistic of interest is

X, 1
lo =lo —— | =1 ||=gl, V,V.
g Pu.m g(l—an [ N JJ 8l V', V3)

=log(V) —log(1-7}) +log(1-V,) —log(V,),

where V| = X, and V, = X, In this particular case the
function

gl (n.v,) = log(,) ~log(1-v,) +log(1—v,) ~log(v,).

Note that EV, = p,,VarV, :%,izlﬁ and
n.

i

gl (> py) =log(p,) —log(1- p,) +log(1- p,) —log(p,) = log p.
Partial derivatives are:

ogl,(v,v,) 1 1 ogl,, (v, v,) 1 1

=—+ and =——- ;
ov, v l-y ov, v, I-v,
and hence
agldd(plspz) — L_'_l — L and
o, 2R X
agldd(pl’pZ):_i_i:— !
ov, P, 9 P9

Linear term Taylor expansion in the neighborhoods of the

mean values of the statistics takes the form:

log p, .. :gldd(l’l,lfz)zlogmL()_(m —pl)— ()_( _P2)~

YZ2UN P24

From this, the estimator log p, , is approximately normal
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with Mean = log p and remind that X, and X,, are
independent)

- bhd +
bhgr n

P-4,

Variance = s* = —
P9, n,

= 2o I+ B2 (p,!Y U,

q, 2

To obtain the plug-in estimator of the variance, we substitute

p

estimations for & and p~' see Tables I and II), namely

Xn, an -1

/ = —, / = — . =_—,and
P T T 0 T
-1 1 .
p, ==— and obtain that
J— —_ 2
2 X, 1 X, 1
§ =——|=—| /In+—=—| = /n,
1-X, \ Xy 1- X0 X0,
1 1
=— — —
mXn(1=Xn) nXn(1-Xs)

7. Confidence Limits
As mentioned, the asymptotic for mean and variance of

estimator p for the cross-product ratio p for direct-direct
sampling scheme has the structure: Ep=p and

Varp = p’s*(p,,p,), where s*(p,p,) is the variance

component.

If the sample sizes for direct-direct sampling scheme tend to
infinity, then
P(‘p—p‘ = za/z/JS(pl,pz)) ~1-a,
where z_, is (I-a/2)-quantile of the standard normal

distribution. Since s°(p,,p,) is a continuous function of its

A2
arguments, replacing s*(p,, p,) by plug-in estimator s from
Section VI.

Therefore, if the sample sizes in direct-direct sampling

scheme tend to infinity, then the interval with the following
end-points,

A

p(liza/zs) M
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is the asymptotic (1—«)-confidence sets for the cross-product

ratio p.We will call it the linear confidence interval to

distinguish it from logarithmic confidence interval.
Directdirect Sampling Scheme:

When both samples are obtained by the direct sampling

scheme with sample sizes n, and n,,then, according to Table
III and Section VI:

n X n, +1

— = —1| and
m+l-nXy\ n,Xn +1

pn,,nZ =

~2 1 1
s = — + —.
nl(l—Xn,)an nz(l—an)an

Hence, the asymptotic n,n, - confidence interval (I)

based on the relative frequencies )_(r,, and )_(nz of successes
(sample means) in each sample and can be written as

.| o

Below, we provide the results of statistical modeling in
Table IV. For each pair (n,,n,)of sample sizes and values
(p,, p,) of success probabilities, we present the Monte-Carlo

estimations of the coverage probability, mean width, and
standard deviation of the width for the confidence interval (2).

The nominal level is assumed to be 0.95.

The results of Table IV show that the interval (2) has a
confidence level lower than nominal and an error not larger
than 0.02 only for n,,n, =200 and p,, p, 20.2.

m X
m+1-nX,

n, +1
nzynz +1

1 1
¥z, — + —
P (=X)X 0 n(1- X)X

Table IV. Coverage probability, width, and standard deviation
for confidence interval (2)
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n 50 \ 100 | 200
0
m | op 0.2 0s 08 0.2 [E 0.8 0.2 05 0.8

0879 | 0895 | 0866 | 0896 | 0907 | 0900 | 0901 | 0912 | 0910
02 | 2046 | 0445 | 0122 | 1705 | 03% | 0105 | 1542 | 0370 | 0.086
1276 | 0189 | 0053 | 0722 | 0138 | 0032 | 0526 | 0113 | 0031
0877 | 0903 | 0824 | 0897 | 0909 | osfoo | 0910 | 0919 | osn2
50| 05 | 7490 | 1582 | 0443 | 6044 | 1374 | 0371 | 5279 | 1232 | 0329
4690 | 0673 | 0189 | 2624 | 0498 | 0130 | 1896 | 0415 | 0112
0871 | 0878 | 0877 | 0885 | osso | o888 | 0891 | 0837 | 08ss
08 | 34039 | 7514 | 2043 | 29073 | 6794 | 1801 | 26513 | 6423 | 1637
26164 | 4719 | 1281 | 18799 | 4179 | 1106 | 15072 | 3.957 | 1.005
0837 | ool | 0901 | 0909 | 0918 | 0%o4 | 0922 | 0926 | 0924
02 | 1792 | 0372 | 0106 | 1412 | 0314 | 0086 | 1204 | 0230 | 0075
1088 | 0139 | 0039 | 0555 | 0092 | 0026 | 0347 | 0.068 | 0013
0so0 | ooz | 0207 [ oo | g8 | osie | 0923 | ocesr | oozs
100 | 05| 6782 | 1370 | 0385 | 5134 | L1I5 | 0314 | 4225 | 0963 | 0262
4236 | 0497 | 0138 | 1987 | 0324 | o022 | 1244 | 0242 | 0067
0885 | 089z | 0898 | o0g07 | ogur | osmos | o015 | o920 | osis
08 | 29051 | 6052 | 1712 | 23.021 | 5151 | 1413 | 19744 | 4633 | 1230
18610 | 2650 | 0728 | 10406 | 2003 | 0547 | 7723 | 173 | 0457
0892 | 0913 | 0909 | 0517 | 0827 | 0825 | 0930 | 0835 | 0532
02 | 1654 | 0320 | 0096 | 1230 | 0262 | 0075 | 0987 | 0222 | 0061
1015 | 0113 | 0031 | 0450 | 0.067 | 0019 | 0259 | 0.045 | 0013
089 | 0919 | 0913 | o0s20 | 0931 | 0526 | 0931 | 0834 | 0537
200 | 05 | 6405 | 1251 | 0371 | 4629 | 0865 | 0281 | 3590 | 0785 | 0212
3991 | 0416 | 0113 | 1718 | 0243 | 0068 | 0940 | 0153 | 0045
0892 | ool | 0902 | 0516 | 0924 | os24 | 0926 | 0832 | 0830
08 | 26488 | 5290 | 1541 | 19.822 | 4209 | 1203 | 15949 | 3501 | 0989
16216 | 1919 | 0523 | 7795 | 1244 | 0344 | 4803 | 0942 | 0239

Confidence limits for logarithmic interval:

Asmentioned, for direct-direct sampling scheme, the normal
approximation for estimator logp, show that mean and
variance has the structure:

Mean=log p and Variance =s°(p,, p,).

If the sample sizes in direct-direct sampling scheme tend to

infinity, then using the inequity
‘logp —log p‘ < Z2,,8(p1s P2),

where z,,is (1-a/2)-quantile of the standard normal

distribution) and replacing s*(p,,p,) by its estimator that
correspond to direct-direct sampling scheme, gives us the
following end points for an asymptotically (1 - &) -confidence

interval for the cross-product ratio o :

pPeXp{Fz,, ;}. 3
Direct-direct Sampling Scheme:
When both samples are obtained by direct sampling scheme

with sample sizes #, and n,, then according to Table III and

Section VI:
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X, +1
O = han_ T —1| and
om+l-n X (ny X, +1
a2 1 1
s

= — — + — = .
annl(l_an) annz(l_an)
Hence the asymptotic n,,n, = © confidence interval (3) based

on the relative frequencies )_(n1 and }nz of successes (sample

means) in each sample and can be written as

n, +1
nzynz +1
Below, we provide simulation results in Table V. For each
pair (n,,n,)of sample sizes and values (p,,p,)of success

probabilities, we present the Monte-Carlo estimations of the
coverage probability, mean width, and standard deviation of

X,
n+1-nmX,

1 1
—1 T ’I _ _ _ _ 4
]exP{+Z"/‘\jn,an(1—X,,,)+n2X,,2(1—Xn:)} @

the width for the confidence interval @). The nominal level is
assumed to be 0.95.

The logarithmic interval (Table V) has good coverage
probability with an error less than 0.01 in most of the cases.
Table V: Coverage probability, width, and standard
deviation for logarithmic interval &)

ng 50 100 200
mo| o P2 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
0.958 0.955  0.955 0.958 0.956  0.954 0.959 0.959  0.956
0.2 2.436 0.506  0.142 1.925 0.439 0.119 1.704 0.406  0.106
1.683 0.209  0.059 0.805 0.147  0.042 0.560 0.118  0.033
0.952 0.954  0.954 0.950 0.947  0.950 0.952 0.955  0.952
50 0.5 8.689 1.760  0.505 6.642 1.484  0.407 5.674 1.335  0.353
6.148 0.748  0.209 2.937 0.540  0.151 2.052 0.444 0.121
0.945 0.953  0.957 0.949 0.953  0.956 0.953 0.954  0.957
0.8 41.288 8.718 2433 | 33480 7.695 2.066 | 29.868 7.191 1.866
37.972  6.202 1.684 | 25.039  5.436 1.461 | 20.623 5.168 1.301
0.956 0.952  0.956 0.953 0.952  0.948 0.954 0.951 0.950
0.2 2.055 0.407 0.119 1.533 0.335  0.093 1.278 0.295 0.079
1.429 0.151 0.042 0.613 0.097  0.028 0.365 0.071 0.020
0.954 0.948  0.957 0.951 0.953  0.952 0.950 0.947  0.951
100 0.5 7.684 1.480 0.439 5.499 1.173  0.335 4.426 1.001 0.274
5.622 0.539  0.147 2.175 0.342  0.097 1.312 0.251 0.070
0.949 0.952  0.957 0.950 0.949  0.954 0.952 0.951 0.951
0.8 33.446  6.650 1.932 | 25.086  5.517 1.534 | 21.043  4.901 1.310
24.528 2.969 0.813 11.708 2.193  0.602 8.444 1.878  0.497
0.955 0.952  0.956 0.952 0.950  0.951 0.952 0.952  0.953
0.2 1.864 0.354  0.106 1.309 0.274  0.079 1.028 0.229  0.064
1.334 0.121 0.032 0.500 0.070  0.020 0.271 0.046 0.013
0.954 0.954  0.959 0.951 0.946  0.952 0.950 0.948  0.953
200 0.5 7.173 1.335  0.407 4.896 1.002  0.296 3.712 0.805 0.229
5.329 0.446  0.118 1.865 0.253  0.071 0.980 0.163  0.046
0.954 0.951 0.960 0.952 0.950  0.955 0.95 0951  0.951
0.8 29.847  5.695 1.703 | 21.128 4.429 1.278 16.621 3.713 1.030
21.014 2.077 0.556 8.536 1.312 0.363 5.068 0.983 0.271
8. Discussion
The simulation results present in Table IV, the linear
asymptotic confidence interval for the cross-product ratio
coefficient has a confidence level quite low precision and poor
accuracy properties. A common practice in statistics is to take
the log transformation of highly skewed data and construct
confidence interval for the population average on the basis of
transformed data. In this article, we investigate logarithmic
confidence interval (the results present in Table V) that shows
better precision and accuracy properties.
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9. Conclusion
The linear confidence interval for the cross-product ratio
coefficient has a confidence level lower than nominal. In this

article, we show that this deficiency may be resolved by
considering the logarithmic confidence interval. We

recommend the analysis of precision and reliability properties
of logarithmic confidence interval for direct-direct sampling

scheme. Consideration of accuracy and reliability properties of
the point estimator for the cross-product ratio is also an
interesting problem.
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