
 

 

The problem of comparing the success probabilities of
 Bernoulli trials arises in biological and medical investigations. 

 In this article, we investigate the accuracy properties for 
 

 

linear and logarithmic asymptotic confidence intervals of  
the cross-product ratio of Binomial proportions under direct-
direct Binomial sample schemes. 

In article Ngamkham and Volodins (2016) [1] and PhD
 thesis Ngamkham (2018) [2], the problem of confidence
 estimation for the ratio of Binomial proportions was 

considered. The cross-product ratio statistic is more frequently
 applied to real data, especially in medical and biological 

research for analyzing 2 2 contingency tables. This can be
 explained by its importance for analyzing 2 2 contingency
 tables; see Lehmann (1959) [3], Section 4.6 on page 143. 

Because of that, it is very interesting to investigate
 statistical inference for the cross-product ratio. There are many
 authors studied about the cross-product ratio under direct-

direct sampling scheme. 

Goodman (1964) [4] developed the simple methods of 
obtaining confidence limits for the cross-product ratio in a 
2 2  table, and extended these methods to obtain 
simultaneous confidence intervals for the 

( 1) ( 1) / 4r r c c− − cross-product ratios in an r c table and, 
likewise, for the relative differences between the 
corresponding cross-product ratios in K different r c tables. 
Goodman’s research indicates an improvement of            
a method for 2 2  table introduced by Gart (1962) [5], and 
extends the improved method the r c tables. These methods 
are easier to apply than those given by Cornfield (1956) [6].  

Anděl (1973) [7] suggests a method based on logarithmic 
interactions for comparing the association in k fourfold tables 
( k independent samples).  

Lee (1981) [8] presented the empirical Bayes modification 
of the cross-product ratio for studying the trend and degree of 
relationship between two cross-classified factors in a 2 2  
contingency table. The Independent Poisson, Product 
Multinomial, and Multinomial are the three sampling schemes 
used for determining the cell frequencies in contingency 
tables. These procedures were studied and compared with the 
classical procedures, the results indicated that the empirical 
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Bayes estimation procedures had a lower average squared 
error than the classical procedures. 

Albert and Gupta (1983) [9] investigated the Bayesian 
approach to the estimation of the cell probabilities for 2 2  
and 2I   tables. In the 2 2  table in which the prior 
information was declared in terms of the cross-product ratio 
coefficient. For the 2I   table they used estimators based on a 
two-stage prior for the I  binomial probabilities, where the first 
stage was the conjugate beta distribution and the second stage 
was discrete uniform.  

Holland and Wang (1987) [10] used the local dependence 
function that measures the margin-free dependence to order 
bivariate distributions. 

Wang (1987) [11] applied the characterization of a bivariate 
normal distribution to generate a table of probability integrals 
via the iterative proportional fitting algorithm.  

McCann and Tebbs (2009) [12] constructed the 
simultaneous logit-based confidence intervals for odds ratios 
in the analysis of classification tables with a fixed reference 
level. They examined six procedures to control the familywise 
error rate and consider the simultaneous coverage probability 
and mean interval width, which can be used to construct 
simultaneous confidence intervals.  

Baxter and Marchant (2010) [13] described that the non-
randomized trials can provide bias in the effectiveness of any 
intrusion. This study showed a process to estimate the bias in 
such trials under the bivariate log-normal and gamma 
distributions, and the size of the bias under two different 
bivariate models. 

Xu (2012) [14] demonstrated the odds ratio or the cross-
product ratio is greater than or equal to one under the 
generalized proportional hazards model. The author used this 
property to improve a process of testing when the generalized 
proportional hazards model is not ideal to use for a data set.  

Schaarschmidt et al. (2017) [15] proposed an asymptotic 
method for computation of simultaneous confidence intervals 
for user-defined sets of pairwise, between-treatment 
comparisons and user-defined sets of odds ratios based on the 
assumption of several independent multinomial samples. An 
improvement of this method by taking the correlation into 
account and application of Dirichlet posteriors with vague 
Dirichlet prior is also considered.  

Niebuhr and Trabs (2019) [16] examined the impact of 
weighted data for the estimation of a discrete probability 
distribution for one-dimensional distributions. The weighting 
of observations usually increase estimation variances. In the 
two-dimensional discrete distribution, this research assumes 
that one marginal distribution is known. This additional 
information in one category of a contingency table allows for 
adjusting the estimation of another marginal if there is some 
degree of association between the two categories. For the 
marginals can not be assume that the marginals are 
independent, the authors presented to use the adjusted 
estimators in applications.  

Martín Andrés et al. (2020) [17] considered the two-tailed 
asymptotic inferences about the odds ratio in cross-sectional 

studies (under the multinomial sampling). The research 
investigated 15 different methods, 5 of which were new and 10 
were classic. They proposed new methods and compared them 
with other procedures. 

A common practice in statistics is to take the log 
transformation of highly skewed data and construct confidence 
intervals for the population average on the basis of 
transformed data. To support our theoretical findings, we apply 
the Monte-Carlo method to investigate the key probability 
characteristics of the linear and logarithmic confidence 
intervals. We use 510N =  for the number of replications in our 
Monte-Carlo simulations. 

A mathematical statement of the problem is as follows. Let  
( )1

1

( )
11 1,...,n

nX X X=  and ( )2

2

( )
21 2,...,n

nX X X=  be two 
independent sequences of Bernoulli random variables with 
success probabilities 1p  and 2 ,p respectively. The observations 
are done according to the sequential sampling schemes with 
Markov stopping times 1v and 2 .v From the results of 
observations 1

1

( )
1( ,..., )v

vX X X=  and 2

2

( )
1( ,..., ),v

vX X X=  it 
is necessary to identify the most accurate method of estimating 
the cross-product ratio. 

Each sample may be obtained in the framework of direct 
binomial sampling scheme. 

Direct binomial sampling. In this scheme, a random vector 
( )

1( ,..., )n
nX X X=  with Bernoulli components and a fixed 

number of observations n  is observed.  Note that 

1

n
ii

T X
=

=  has the Binomial distribution ( , ),B n p which has 

two parameters n  and ,p where n is a natural number and 
0 1.p   If a random variable T  has Binomial distribution, 
then its probability mass function is  

{ } (1 ) ,  0,1,..., .t n tn
P T t p p t n

t
− 

= = − = 
 

 

The random variable n
TX
n

= is asymptotically normal with a 

mean X p =  and variance 2 (1 ) .X
p p

n


−
=  

In the following, we will keep the notation 1 2, ,...X X for a 
Bernoulli sequence obtained by the direct sampling scheme. 

First, we consider the problem of estimating parameter 

p (success probability) and parametric function 
1
p

for the 

Bernoulli trials. It seems difficult to estimate 
1 ,
q

where 

1 ,q p= −  so we avoid this expression in our further 

2. Estimation of Proportion p
 and Its Reciprocal p-1 
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derivations by expressing it in terms of p
q

 and 1 ;
p

 see 

Section III. In this section we discuss how to estimate p and 

1 .
p

The following formulae is derived in Ngamkham (2018) [2] 

and Ngamkham and Volodins (2016) [1];  
we present them in Table I. 
Table I. Estimators for the proportion p and the reciprocal 1p−  

for direct-direct sampling scheme 

 
In the case of direct-direct sampling scheme, the estimate 
1

np− is biased. Ngamkham (2018) [2] and Ngamkham and 
Volodins (2016) [1] proved that  

( ) ( )1 1 11 1Bias (1 )n
n np E p p

p p
− − += − = −  is decreasing with an 

exponential rate as .n →   The estimate np  is unbiased 
estimator.    

 
p
q  

and q
p   

To solve the problems stated in the Introduction, it is 
necessary to construct estimates, preferably with exponentially 

decreasing bias, for the parametric functions 
p
q

 and ,q
p

where 

1q p= −  for direct-direct Binomial sampling scheme of 
Bernoulli trials. 

From the point of view of estimation, the simplest case is an 

estimation of the parametric function .q
p

Really, 

1 1 1q p
p p p

−
= = −  

and we already know how to estimate 1
p

 for direct Binomial 

sampling scheme of Bernoulli trials from section II. 

In the case of direct binomial sampling, we use statistics 
1 1

1n
n

np
nX

− +
=

+
as an estimator of 1p−  with an exponentially 

decreasing bias. 

We proceed with estimation of the parametric function .p
q

  

Proposition I. In the case of direct binomial sampling the 

statistics 

/
1

n
n

n

nXp q
n nX

=
+ −

 

Estimate the parametric functions p
q

 with an exponentially 

decreasing bias. 

Proof: As we know, the statistic nT nX=  has the Binomial 

distribution ( , ).B n p Therefore 

0

1

1

1 1

/
1

           
1 1

!           for  0 we have zero term
1 !( )!

!           =
( 1)!( 1 )!

!          mak
!( )!

n
n

n

n
k n k

k

n
k n k

k

n
k n k

k

j n j

nXE p q E
n nX

nT kE p q
kn T n k

k n p q k
n k k n k

n p q
k n k

n p q
j n j

−

=

−

=

−

=

+ − −

=
+ −

 
= =  

+ − + −  

= =
+ − −

− + −

=
−







1

0

0

0

e a substitution  1

! !          
!( )! !0!

         ( ) (1 ).

n

j

n
j n j n

j

n n n

j k

p n np q p q
q j n j n
p pp q p p
q q

−

=

−

=

= −

 
= − 

− 

 = + − = − 





Therefore, 
1

Bias( / ) /
n

n n
p pp q E p q
q q

+

= − =  is decreasing  

with an exponential rate as .n →    

To summarize, we present Table II. for the estimation of p
q

 

and its reciprocal. In Table II, n is fixed numbers, 1{ ,...}X  is 

sequences of independent Bernoulli random variables with the 

parameter 
1

, , .n
nkk

Tp T X X
n=

= =  

Table II. Estimators for the parametric functions p
q

 and q
p

 

for direct sampling scheme 

3. Estimating the Parametric Functions 
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In Table III, we present estimator of the cross-product ratio 

of two proportions 
1 2

1 2 1 2

2 1 1 2

(1 )
/ /

(1 ) n n
p p p q p q q p
p p q p


−

= =  = 
−

 

for direct-direct binomial sampling scheme. We compute the 
estimator of the cross-product ratio from two independent 
samples from direct-direct sampling scheme; from Table II. we 

used the parametric functions 
p
q

and q
p

 substituted by 

1

1

1

/ n
p p q
q

= and 
2

2

2

/ n
q q p
p

= , respectively.   

Table III. Estimator of the cross-product ratio of two 

proportions 1 2

2 1

(1 )
(1 )

p p
p p


−

=
−

 and its approximation for direct-

direct sampling scheme. 

 
Estimate of the cross-product ratio   is continuous 

functions of statistics 1nX  and 2nX  with finite second 

moments; therefore the estimate is asymptotically normal. 1nX  

and 2nX are independent. Now we find the asymptotic of the 

mean and variance of this estimate using the standard Delta 

method.  

Delta method can be explained briefly in the following way; 
for details we refer interested reader; see Lehmann (2004) [18], 
Section 2.5 on page 85. 

Let 1 2( , )g v v  be a differentiable scalar function of two 

variables. Consider an estimator 1 2( , ),T g V V= which is a 
function of two other basic statistics 1V  and 2 .V  Usually 
statistics 1V  and 2V  have a simple form and are jointly 
asymptotically normal. The asymptotic distribution of an 
estimator T  is found with the help of delta-method, which is a 
procedure of stochastic representation of  T  with the accuracy  

 where n is the sample size. 

By the Delta-method, we expand function g  into a Taylor 

series at the point 1 1EV =  and 2 2 :EV =              

2
1 2

1 2 1 2
1

( , )
( , ) ( , ) ( ) Remainder.i i

i i

gg V V g V
v

 
  

=


= + − +


  

It is possible to prove that the remainder term of the 
expansion converges in probability to zero with the rate 

 as sample sizes 1n  and 2n  tends to 
infinity. We have that 1 2 1 2( , ) ( , )g V V g  −  is asymptotically 
normal with a mean of zero and variance 

22
1 2

1

( , )
( ) .i i

i i

gE V
v

 


=

 
− 

 
  

Therefore, the test statistics T  is asymptotically normal 

with mean 1 2( , )g    and the variance of the form that is 

expressed through the elements of the covariance matrix of 

basic statistics 1 2,V V  and the coefficients 1 2( , )
.

i

g
v

 


    

For large values of 1n and 2 ,n the estimator of the cross-

product ratio  is functions of statistics 1nX  and 2nX  with 

finite second moments; therefore, the estimate is 

asymptotically normal. Our immediate task is to find the 

asymptotic of the mean and variance of this estimator, for 

which we explore the standard Delta method describe above. 

In our case, the method is based on a Taylor series expansion 

in the neighborhoods of the mean value of the statistic 1nX  

and 2 .nX  It is possible to calculate variance because statistics 

1nX  and 2nX are independent. 

We consider direct-direct sampling scheme: 

Direct-direct: Fix two natural numbers 1n and 2 .n  Let 

( )1

1

( )
11 1,...,n

nX X X=  and ( )2

2

( )
21 2,...,n

nX X X=  be two 

independent sequences of Bernoulli random variables. We 
know that the sample means for both samples 11 nV X= and 

22 nV X= are asymptotically normal and jointly approximately 

5. Delta-Method 

4. Point Estimator for the
 Cross-product Ratio 
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normal, because the samples are independent. The form of the 
function 1 2( , )g V V will be presented in section VI. The 

accuracy is   

  

For large values of 1n and 2 ,n the estimator of the cross-

product ratio  is functions of statistics 1nX  and 2nX  with 
finite second moments; therefore, the estimate is 
asymptotically normal. Our immediate task is to find the 
asymptotic of the mean and variance of this estimator, for 
which we explore the standard Delta method describe in 
Section V. 

Remember that (see, for example Proposition 3 and 4, 

Ngamkham (2018) [2]): statistic nX  has a mean p and variance 

,pq
n

and is asymptotically normal with these parameters. 

If we use formulae for ,  then our expressions for 

asymptotic variance are quite cumbersome. Hence we use the 

approximate estimators   in Delta method derivations. 

In the following we will see that the normal approximation 

for estimator   for direct-direct sampling scheme has the 

structure of mean and variance: 

Asymptotic Mean =  and  

Asymptotic Variance 2 2
1 2( , ).s p p=  

In the following, we will call 2
1 2( , )s p p  a variance 

component.  

Direct-direct Sampling Scheme: 

From Table III, in this case the statistic of interest is 

1

1 2
1 2

1
, 1 2

1 2

1 11 ( , ) 1 ,
11

n
n n dd

n n

VX g V V
V VX X


   

= − = = −   
−−   

 where 

11 nV X= and 22 .nV X=  In this particular case the function 

1
1 2

1 2

1( , ) 1 .
1dd

vg v v
v v

 
= − 

−  
Note that 

, , 1,2i i
i i i

i

p q
EV p VarV i

n
= = =  and 

1
1 2

1 2

1( , ) 1 .
1dd

pg p p
p p


 

= − = 
−  

 

Partial derivatives are: 

1 2
2

1 21

( , ) 1 1 1
(1 )

ddg v v
v vv

 
= − 

 −  
 and 1 2 1

2
2 1 2

( , )
,

(1 )
ddg v v v

v v v


= −
 −

 

and hence 

1 2 2
2

1 1 2

( , )ddg p p q
v q p


=


 and 1 2 1

2
2 1 2

( , )
.ddg p p p

v q p


= −


  

A linear term Taylor expansion in the neighborhoods of the 

mean values of the statistics takes the form 

( ) ( )1 21 2

2 1
, 1 2 1 22 2

1 2 1 2

( , ) .n nn n dd
q pg V V X p X p

q p q p
 =  + − − −  

From this, the estimator 
1 2,n n is approximately normal with 

Mean= and (remembering that 1nX and 2nX are independent)  

2 2
2 1 1 1 2 2

4 2 2 4
1 21 2 1 2

2 1 2 1 21 2
1 1 2 2

1 2

Variance=

            ( ) / ( ) / .

q p q p p q
n nq p q p

p pp n p n
q q

 − −

+

    
= +    

     

 

In this case, the variance component 

2 1 2 1 21 2
1 2 1 1 2 2

1 2

( , ) ( ) / ( ) / .
p ps p p p n p n
q q

− −   
= +   

   
 

From Table III, we estimate   as 

1

1 2

1 2

1 1 2

1
1 .

1 1
n

n n

n X n
n n X n X


 +

= −  + − + 

 

To obtain the plug-in estimator of the variance component, we 

substitute estimations for p
q

 and 1p−  (see Tables I and II), 

namely 1 2

1 2

1 1 2 2/ , / ,
1 1

n n

n n

X Xp q p q
X X

= =
− −

 
1

1
1

1 ,
n

p
X

− = and 

2

1
2

1
n

p
X

− =  and obtain 

1 2

1 1 2 2

1 1 2 2

2 2
2

1 2

1 2

1 1/ /
1 1

1 1  .
(1 ) (1 )

n n

n n n n

n n n n

X Xs n n
X X X X

n X X n X X

   
= +   

− −   

= +
− −

 

  

 

 

6. Asymptotic Distribution of Estimators
for the Cross-product Ratio 
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Asymptotic distribution of logarithm of estimate for the cross-

product ratio: 

In the following we will see that the normal approximation 

for estimator log    for direct-direct sampling scheme has the 

structure of mean and variance: 

Asymptotic Mean of log  log   =  and 

Asymptotic Variance of 2
1 2log  ( , ).s p p =  

If we use formulae for ,  then our expressions for 

asymptotic variance are quite cumbersome. Hence we use the 

approximate estimators   in Delta method derivations. 

Direct-direct Sampling Scheme: 

From Table III, in this case the statistic of interest is 

1

1 2
1 2

, 1 2

1 1 2 2

1log  log 1 ( , )
1

              log( ) log(1 ) log(1 ) log( ),

n
n n dd

n n

X gl V V
X X

V V V V


  

= − =   −   

= − − + − −

 

where 11 nV X= and 22 .nV X=  In this particular case the 

function 

1 2 1 1 2 2( , ) log( ) log(1 ) log(1 ) log( ).ddgl v v v v v v= − − + − −   

Note that , , 1,2i i
i i i

i

p q
EV p VarV i

n
= = =  and 

1 2 1 1 2 2( , ) log( ) log(1 ) log(1 ) log( ) log .ddgl p p p p p p = − − + − − =

 Partial derivatives are: 

1 2

1 1 1

( , ) 1 1
1

ddgl v v
v v v


= +

 −
 and 1 2

2 2 2

( , ) 1 1 ,
1

ddgl v v
v v v


= − −

 −
 

and hence 

1 2

1 1 1 1 1

( , ) 1 1 1ddgl p p
v p q p q


= + =


 and 

1 2

2 2 2 2 2

( , ) 1 1 1 .ddgl p p
v p q p q


= − − = −


 

Linear term Taylor expansion in the neighborhoods of the 

mean values of the statistics takes the form: 

( ) ( )1 21 2, 1 2 1 2
1 1 2 2

1 1log  ( , ) log .n nn n ddgl V V X p X p
p q p q

 =  + − − −

From this, the estimator 
1 2,log  n n is approximately normal 

with Mean log = and (remind that 1nX and 2nX  are 

independent)  

2 1 1 2 2
2 2 2 2

1 21 1 2 2

1 2 1 21 2
1 1 2 2

1 2

1 1Variance

             ( ) / ( ) / .

p q p qs
n np q p q

p pp n p n
q q

− −

= = +

= +

 

To obtain the plug-in estimator of the variance, we substitute 

estimations for p
q

 and 1p− (see Tables I and II), namely 

1

1

1 1/ ,
1

n

n

Xp q
X

=
−

2

2 1

1
2 2 1

1/ , ,
1

n

n n

Xp q p
X X

−= =
−

and 

2

1
2

1
n

p
X

− =  and obtain that 

1 2

1 1 2 2

1 1 2 2

2 2
2

1 2

1 2

1 1/ /
1 1

1 1  .
(1 ) (1 )

n n

n n n n

n n n n

X Xs n n
X X X X

n X X n X X

   
= +   

− −   

= +
− −

 

As mentioned, the asymptotic for mean and variance of 
estimator   for the cross-product ratio   for direct-direct 

sampling scheme has the structure: E =  and 
2 2

1 2( , ),Var s p p =  where 2
1 2( , )s p p  is the variance 

component. 
If the sample sizes for direct-direct sampling scheme tend to 

infinity, then 

( )/ 2 1 2( , ) 1 ,P z s p p   −  −  

where /2z
 is (1 / 2)− -quantile of the standard normal 

distribution.  Since 2
1 2( , )s p p  is a continuous function of its 

arguments, replacing 2
1 2( , )s p p  by plug-in estimator 

2
s from 

Section VI. 

Therefore, if the sample sizes in direct-direct sampling 

scheme tend to infinity, then the interval with the following 

end-points, 

( )/ 21 z s                                            (1) 

7. Confidence Limits 
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is the asymptotic (1 )− -confidence sets for the cross-product 

ratio . We will call it the linear confidence interval to 

distinguish it from logarithmic confidence interval. 

 Direct-direct Sampling Scheme: 

When both samples are obtained by the direct sampling 

scheme with sample sizes 1n and 2 ,n then, according to Table 

III and Section VI: 

1

1 2
1 2

1 2
,

1 1 2

1
1

1 1
n

n n
n n

n X n
n n X n X


 +

= −  + − + 

 and 

1 1 2 2

2

1 2

1 1 .
(1 ) (1 )n n n n

s
n X X n X X

= +
− −

 

Hence, the asymptotic 1 2,n n →   confidence interval (1) 

based on the relative frequencies 1nX  and 2nX  of successes 

(sample means) in each sample and can be written as 

1

1 2 1 1 2 2

1 2
2

1 1 2 1 2

1 1 11 1 .
1 1 (1 ) (1 )

n

n n n n n n

n X n z
n n X n X n X X n X X

  +
− +   + − + − −  

 (2) 

Below, we provide the results of statistical modeling in 
Table IV. For each pair 1 2( , )n n of sample sizes and values 

1 2( , )p p of success probabilities, we present the Monte-Carlo 
estimations of the coverage probability, mean width, and 
standard deviation of the width for the confidence interval (2). 
The nominal level is assumed to be 0.95.  

The results of Table IV show that the interval (2) has a 
confidence level lower than nominal and an error not larger 
than 0.02 only for 1 2, 200n n = and 1 2, 0.2.p p   
Table IV. Coverage probability, width, and standard deviation 
for confidence interval (2) 

 
 

Confidence limits for logarithmic interval: 

As mentioned, for direct-direct sampling scheme, the normal 

approximation for estimator log   show that mean and 

variance has the structure:  

Mean=log   and 2
1 2Variance ( , ).s p p=  

If the sample sizes in direct-direct sampling scheme tend to 

infinity, then using the inequity 

2 1 2log log ( , ),z s p p −   

(where 2z is (1 2)− -quantile of the standard normal 

distribution) and replacing 2
1 2( , )s p p  by its estimator that 

correspond to direct-direct sampling scheme, gives us the 

following end points for an asymptotically (1 )− -confidence  

interval for the cross-product ratio :     

2exp{ }.z s                                     (3) 

Direct-direct Sampling Scheme: 

When both samples are obtained by direct sampling scheme 

with sample sizes 1n  and 2 ,n then according to Table III and 

Section VI: 
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1

1 2
1 2

1 2
,

1 1 2

1
1

1 1
n

n n
n n

n X n
n n X n X


 +

= −  + − + 
 and 

1 1 2 2

2

1 2

1 1 .
(1 ) (1 )n n n n

s
n X X n X X

= +
− −

 

Hence the asymptotic 1 2,n n →   confidence interval (3) based 

on the relative frequencies 1nX and 2nX  of successes (sample 

means) in each sample and can be written as 

1

1 2 1 1 2 2

1 2
2

1 1 2 1 2

1 1 11 exp .
1 1 (1 ) (1 )

n

n n n n n n

n X n z
n n X n X n X X n X X

  +  
− +    + − + − −    

  (4) 

Below, we provide simulation results in Table V. For each 
pair 1 2( , )n n of sample sizes and values 1 2( , )p p of success 
probabilities, we present the Monte-Carlo estimations of the 
coverage probability, mean width, and standard deviation of 
the width for the confidence interval (4). The nominal level is 
assumed to be 0.95.  

The logarithmic interval (Table V.) has good coverage 
probability with an error less than 0.01 in most of the cases. 
Table V: Coverage probability, width, and standard 
deviation for logarithmic interval (4) 

 

The simulation results present in Table IV, the linear 
asymptotic confidence interval for the cross-product ratio 
coefficient has a confidence level quite low precision and poor 
accuracy properties. A common practice in statistics is to take 
the log transformation of highly skewed data and construct 
confidence interval for the population average on the basis of 
transformed data. In this article, we investigate logarithmic 
confidence interval (the results present in Table V.) that shows 
better precision and accuracy properties.  

The linear confidence interval for the cross-product ratio 
coefficient has a confidence level lower than nominal. In this 
article, we show that this deficiency may be resolved by 
considering the logarithmic confidence interval. We 
recommend the analysis of precision and reliability properties 
of logarithmic confidence interval for direct-direct sampling 
scheme. Consideration of accuracy and reliability properties of 
the point estimator for the cross-product ratio is also an 
interesting problem.   
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